BJ_TL
Jun 24, 2020
Maria Dermit
1 minute read

UK goverment messages

In order to know what messages are being twitted by UK’s PM I analysed his timeline. Reporting the most recent 3,200 statuses, it is clear that the number of Brexit messages out-passes Covid-related tweets.

bj <- get_timeline("BorisJohnson", n = 3200)
m<-bj %>% filter(is_retweet=="FALSE") %>% pull(hashtags)%>%
  unlist() %>% table() %>% names()
v<-bj %>% filter(is_retweet=="FALSE") %>% pull(hashtags)%>%
  unlist() %>% table() %>% as.numeric()
d<-data.frame(m,v) %>% arrange(v)
wordcloud(words = d$m, freq = d$v, min.freq = 3,scale = c(3, 0.5),
          max.words=300, random.order=FALSE, rot.per=0.35, 
          colors=brewer.pal(8, "Dark2"))